
Professor F. Grillot

Problem set 4

EE 270 - Applied Quantum Mechanics
Due Wednesday Dec. 13, 2017 at 10.00 AM

Prerequisites : For exercises II, III, and IV, read supplementary informations

3 and 4. You may also want to go over the corresponding reading Gri�ths,

chapters. 6.1, 6.2, 8, 9.1, and 9.2.

Exercise I (10 points)

Compute the expectation values of hri and hr2i for the ground state of the hydrogen
atom (recall that the |100i = R10(r)Y00(✓,')).
Hint : Z +1
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Exercise II (20 points)

Consider an electron in a 1D quantum well of width L=10 nm with infinitely high
barriers at (x = ±L/2), under application of an electric field in the x-direction of
strength . Use an e↵ective mass of 0.067⇥m0. We could imagine using the transi-
tions inside this quantum well for a infrared radiation detector.
(a) Calculate the second order perturbation to the energy for the n = 1 and n = 2
states as a function of field strength. If we measure the absorption of light caused
by electrons making transitions from n = 1 ! 2, plot the peak photon energy ab-
sorbed versus electric field for field strengths from 0 to 107 V/m.
Hint :
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(b) Estimate, for what range of field strengths might we expect perturbation theory
to provide a reasonable approximation.

Exercise III (20 points)

Consider the 2-D simple harmonic oscillator with Hamiltonian
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Since this Hamiltonian is separable in x and y, the eigenstates are separable into
product states
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~! and eigenfunctions �nx,ny(x, y) = �nx(x)�ny(y)

where �nx(x) and �ny(y) are eigenfunctions of the 1-D harmonic oscillator.
Suppose we add a perturbation Ĥ0 = 1

2 K0 x̂ŷ to the system. How does the three-fold
degenerate energy E = 3~! split due to this perturbation? To first order, what are
the new eigenenergies and eigenstates?
(Hint : Recall that the position operators can be written in terms of the crea-
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that each operator only works on the corresponding part of the product state, e.g.,
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Exercise IV (20 points)

Time-dependent perturbation theory implies that the state | (t)i = (ca(t), cb(t)) of
a two-level system with energies Ea and Eb exposed to a time-dependent Hamilto-
nian H0 can be determined exactly by solving for the coe�cients

ċa = � i
~

H0abe�i!batcb and ċb = � i
~

H0baei!batca

where !ba = (Eb � Ea)/~. In general this problem is not analytically solvable for a
sinusoidal interaction H = 2V cos(!t). However, if ! is close to !ba, we can make
the rotating wave approximation (RWA) that H ' Ve�i!t, such that H0ba = Vbae�i!t

and H0ab = Vabei!t.
a) Find the exact solution for | (t)i within the RWA for the initial condition ca(t =
0) = 1, cb(t = 0) = 0. Express your results in terms of the Rabi frequency.

!r =
1
2

p
(! � !ba)2 + (2|Vab|/~)2

(Hint : find a di↵erential equation purely in terms of cb and look for solutions of
the form exp(�t).)



Figure 1 – How do Alice and Bob have a "chat" without transferring physical particles ? (Courtesy : John
Richardson)

b) Determine the transition probability Pab(t) and show that it never exceeds 1.
Check that the exact Pab(t) reduces to Pab =

4|Vab|2
~2(!ba�!)2 sin2

h
(!ba�!)t
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i
when the

perturbation is small, and state precisely what small means in this context as a
constraint on V .
c) At what time does the system first return to its initial state ?

Exercise V (20 points)

In quantum computing, a quantum bit (qbit) is a unit of quantum information, the
quantum analogue of the classical bit. A qbit is a two-state quantum-mechanical
system, such as the polarization of a single photon : here the two states are vertical
polarization and horizontal polarization. In a classical system, a bit would have to
be in one state or the other. However, quantum mechanics allows the qbit to be
in a superposition of both states at the same time, a property that is fundamental
to quantum computing. A classical bit of information has states 0 or 1 which in
quantum mechanics corresponds to the orthonormal basis |0i and |1i.
a) Considering an Hilbert space H of dimension 2 and BC = {|0i, |1i} the cor-
responding computational basis, give the expression of the state vector | i 2 H
associated to a qbit.
b) Show that the probability to obtain the result b is given by :

P(b) = h |P̂b| i b 2 {0, 1} (1)

Write the 2x2 matrices associated to P̂0 et P̂1.
c) The wavefunction of a quantum system | iAB can be described as a tensor pro-
duct of Hilbert spaces HA ⌦ HB. Now consider two qbits, A et B from the two



Hilbert spacesHA andHB with the corresponding basis {|0iA, |1iA} and {|0iB, |1iB}
respectively. Determine the basis representing the two qbits operating inHA⌦HB.
Give the expression of a the 2 qbit quantum state.
d) An entangled system is defined to be one whose quantum state cannot be fac-
tored as a product of states of its local constituents ; that is to say, they are not
individual particles but are an inseparable whole. Show that the quantum state of
the 2 qbits | +iAB =

1p
2
[ |0iA ⌦ |0iB + |1iA ⌦ |1iB ] is entangled.

e) The state | +iAB can be seen as a state of two particles that is to stay the quantum
state of a two-photon system for which each photon is associated to a qbit. We per-
form a measurement on the first photon in the computational basis. What is is the
probability to get 0, respectively 1? Now consider a correlation measurement for
which each photons is measured independently in the computational basis. What
are the possible results of such a measurement?

Exercise VI (10 points)

Consider a system with two electrons (for example two electrons in a box or an
Helium atom) in an excited state where the electron configuration is described by
placing one of the electrons in a spatial orbital �a and the other in a spatial orbital
�b.
(a) The possible wavefunctions (and thereby the possible states) of the two electron
system can be obtained by writing down first the possible symmetric and antisym-
metric spatial wave wavefunctions for the two electrons, the possible symmetric
and antisymmetric spin functions of the system (by assigning each electron to ei-
ther ↵ and � spin "functions") and then considering the possible allowed products
of the spatial and spin functions. Remember, that the overall wavefunction for
electrons has to be antisymmetric under interchange of electron labels. How many
possible states are there and what are the corresponding wavefunctions?
(b) Write down the possible Slater determinants that can be formed from the va-
rious simple product spin orbitals such as �a↵, �a�, etc.
(c) How are the Slater determinants obtained in part (b) related to the antisym-
metric wave functions obtained in part (a) (recall : the Slater determinants are the
basic building blocks for forming many electron wavefunctions, find what linear
combinations of the Slater determinants in (b) give you the singlet and triplet state
wavefunctions).


